On spurious numerical solutions for nonlinear eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Multiple Nontrivial Solutions for Nonlinear Eigenvalue Problems
In this paper we study a nonlinear eigenvalue problem driven by the p-Laplacian. Assuming for the right-hand side nonlinearity only unilateral and sign conditions near zero, we prove the existence of three nontrivial solutions, two of which have constant sign (one is strictly positive and the other is strictly negative), while the third one belongs to the order interval formed by the two opposi...
متن کاملNumerical Analysis of Nonlinear Eigenvalue Problems
We provide a priori error estimates for variational approximations of the ground state eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form −div(A∇u) + V u + f(u)u = λu, ‖u‖L2 = 1. We focus in particular on the Fourier spectral approximation (for periodic problems) and on the P1 and P2 finite-element discretizations. Denoting by (uδ, λδ) a variational approximation o...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On the spurious solutions in the high-order finite difference methods for eigenvalue problems
In this paper, the origins of spurious solutions occurring in the high-order finite difference methods are studied. Based on a uniform mesh, spurious modes are found in the high-order one-sided finite difference discretizations of many eigenvalue problems. Spurious modes are classified as spectral pollution and non-spectral pollution. The latter can be partially avoided by mesh refinement, whil...
متن کاملA Multigrid-Lanczos Algorithm for the Numerical Solutions of Nonlinear Eigenvalue Problems
We study numerical methods for solving nonlinear elliptic eigenvalue problems which contain folds and bifurcation points. First we present some convergence theory for the MINRES, a variant of the Lanczos method. A multigrid-Lanczos method is then proposed for tracking solution branches of associated discrete problems and detecting singular points along solution branches. The proposed algorithm ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1988
ISSN: 0035-7596
DOI: 10.1216/rmj-1988-18-2-357